612 research outputs found

    Model-based myoelectric control of robots for assistance and rehabilitation

    Get PDF
    The first anthropomorphic robots and exoskeletons were developed with the idea of combining man and machine into an intimate symbiotic unit that can perform as one joint system. A human-robot interface consists of processes of two different nature: (1) the physical interaction (pHRI) between the device and its user and (2) the exchange of cognitive information (cHRI) between the human and the robot. To achieve the symbiosis between the two actors, both need to be optimized. The evolution of mechanical design and the introduction of new materials pushed pHRI to new frontiers on ergonomics and assistance performance. However, cHRI still lacks on this direction because is more complicated: it requires communication from the cognitive processes occuring in the human agent to the robot, e.g. intention detection; but also from the robot to the human agent, e.g. feedback modalities such as haptic cues. A possible innovation is the inclusion of the electromyographic signal, the command signal from our brain to the musculoskeletal system for the movement, in the robot control loop. The aim of this thesis was to develop a real-time control framework for an assistive device that can generate the same force produced by the muscles. To do this, I incorporated in the robot control loop a detailed musculoskeletal model that estimates the net torque at the joint level by taking as inputs the electromyography signals and kinematic data. This module is called myoprocessor. Here I present two applications of this control approach: the first was implemented on a soft wearable arm exosuit in order to evaluate the adaptation of the controller on different motion and loads. The second one, was a generation of myoprocessor-driven force field on a planar robot manipulandum in order to study the modularity changes of the musculoskeletal system. Both applications showed that the device controlled by myoprocessor works symbiotically with the user, by reducing the muscular activity and preserving the motor performance. The ability of seamlessly combining musculoskeletal force estimators with assistive devices opens new avenues for assisting human movement both in healthy and impaired individuals

    Bimanual Motor Strategies and Handedness Role During Human-Exoskeleton Haptic Interaction

    Full text link
    Bimanual object manipulation involves multiple visuo-haptic sensory feedbacks arising from the interaction with the environment that are managed from the central nervous system and consequently translated in motor commands. Kinematic strategies that occur during bimanual coupled tasks are still a scientific debate despite modern advances in haptics and robotics. Current technologies may have the potential to provide realistic scenarios involving the entire upper limb extremities during multi-joint movements but are not yet exploited to their full potential. The present study explores how hands dynamically interact when manipulating a shared object through the use of two impedance-controlled exoskeletons programmed to simulate bimanually coupled manipulation of virtual objects. We enrolled twenty-six participants (2 groups: right-handed and left-handed) who were requested to use both hands to grab simulated objects across the robot workspace and place them in specific locations. The virtual objects were rendered with different dynamic proprieties and textures influencing the manipulation strategies to complete the tasks. Results revealed that the roles of hands are related to the movement direction, the haptic features, and the handedness preference. Outcomes suggested that the haptic feedback affects bimanual strategies depending on the movement direction. However, left-handers show better control of the force applied between the two hands, probably due to environmental pressures for right-handed manipulations

    Environment-based Assistance Modulation for a Hip Exosuit via Computer Vision

    Get PDF
    Just like in humans vision plays a fundamental role in guiding adaptive locomotion, when designing the control strategy for a walking assistive technology, Computer Vision may bring substantial improvements when performing an environment-based assistance modulation. In this work, we developed a hip exosuit controller able to distinguish among three different walking terrains through the use of an RGB camera and to adapt the assistance accordingly. The system was tested with seven healthy participants walking throughout an overground path comprising of staircases and level ground. Subjects performed the task with the exosuit disabled (Exo Off), constant assistance profile (Vision Off ), and with assistance modulation (Vision On). Our results showed that the controller was able to promptly classify in real-time the path in front of the user with an overall accuracy per class above the 85%, and to perform assistance modulation accordingly. Evaluation related to the effects on the user showed that Vision On was able to outperform the other two conditions: we obtained significantly higher metabolic savings than Exo Off, with a peak of about -20% when climbing up the staircase and about -16% in the overall path, and than Vision Off when ascending or descending stairs. Such advancements in the field may yield to a step forward for the exploitation of lightweight walking assistive technologies in real-life scenarios

    Adaptive model-based myoelectric control for a soft wearable arm exosuit:A new generation of wearable robot control

    Get PDF
    Despite advances in mechatronic design, the widespread adoption of wearable robots for supporting human mobility has been hampered by 1) ergonomic limitations in rigid exoskeletal structures and 2) the lack of human-machine interfaces (HMIs) capable of sensing musculoskeletal states and translating them into robot-control commands. We have developed a framework that combines, for the first time, a model-based HMI with a soft wearable arm exosuit that has the potential to address key limitations in current HMIs and wearable robots. The proposed framework was tested on six healthy subjects who performed elbow rotations across different joint velocities and lifting weights. The results showed that the model-controlled exosuit operated synchronously with biological muscle contraction. Remarkably, the exosuit dynamically modulated mechanical assistance across all investigated loads, thereby displaying adaptive behavior

    Highlights of Thirty-Year Experience of CO2 Laser Use at the Florence (Italy) Department of Dermatology

    Get PDF
    The CO2 laser has been used extensively in dermatological surgery over the past 30 years and is now recognised as the gold standard for soft tissue vaporization. Considering that the continuous wave CO2 laser delivery system and the newer “superpulsed” and scanned CO2 systems have progressively changed our practice and patient satisfaction, a long range documentation can be useful. Our experience has demonstrated that the use of CO2 laser involves a reduced healing time, an infrequent need for anaesthesia, reduced thermal damage, less bleeding, less inflammation, the possibility of intra-operative histologic and/or cytologic examination, and easy access to anatomically difficult areas. Immediate side effects have been pain, erythema, edema, typically see with older methods, using higher power. The percentage of after-treatment keloids and hypertrophic scars observed was very low (~1%) especially upon the usage of lower parameters. The recurrence of viral lesions (condylomas and warts) have been not more frequent than those due to other techniques. Tumor recurrence is minor compared with radiotherapy or surgery. This method is a valid alternative to surgery and/or diathermocoagulation for microsurgery of soft tissues. Our results are at times not consistent with those published in the literature, stressing the concept that multicentric studies that harmonization methodology and the patient selection are vital

    A Comprehensive Framework for the Modelling of Cartesian Force Output in Human Limbs

    Get PDF
    Neuromuscular functional electrical stimulation represents a valid technique for functional rehabilitation or, in the form of a neuroprosthesis, for the assistance of neurological patients. However, the selected stimulation of single muscles through surface electrodes remains challenging particularly for the upper extremity. In this paper, we present the MyoCeption, a comprehensive setup, which enables intuitive modeling of the user’s musculoskeletal system, as well as proportional stimulation of the muscles with 16-bit resolution through up to 10 channels. The system can be used to provide open-loop force control, which, if coupled with an adequate body tracking system, can be used to implement an impedance control where the control loop is closed around the body posture. The system is completely self-contained and can be used in a wide array of scenarios, from rehabilitation to VR to teleoperation. Here, the MyoCeption’s control environment has been experimentally validated through comparison with a third-party simulation suite. The results indicate that the musculoskeletal model used for the MyoCeption provides muscle geometries that are qualitatively similar to those computed in the baseline model

    SARS-CoV-2-Associated ssRNAs Activate Human Neutrophils in a TLR8-Dependent Fashion

    Get PDF
    COVID-19 disease is characterized by a dysregulation of the innate arm of the immune system. However, the mechanisms whereby innate immune cells, including neutrophils, become activated in patients are not completely understood. Recently, we showed that GU-rich RNA sequences from the SARS-CoV-2 genome (i.e., SCV2-RNA1 and SCV2-RNA2) activate dendritic cells. To clarify whether human neutrophils may also represent targets of SCV2-RNAs, neutrophils were treated with either SCV2-RNAs or, as a control, R848 (a TLR7/8 ligand), and were then analyzed for several functional assays and also subjected to RNA-seq experiments. Results highlight a remarkable response of neutrophils to SCV2-RNAs in terms of TNFα, IL-1ra, CXCL8 production, apoptosis delay, modulation of CD11b and CD62L expression, and release of neutrophil extracellular traps. By RNA-seq experiments, we observed that SCV2-RNA2 promotes a transcriptional reprogramming of neutrophils, characterized by the induction of thousands of proinflammatory genes, similar to that promoted by R848. Furthermore, by using CU-CPT9a, a TLR8-specific inhibitor, we found that SCV2-RNA2 stimulates neutrophils exclusively via TLR8-dependent pathways. In sum, our study proves that single-strand RNAs from the SARS-CoV-2 genome potently activate human neutrophils via TLR8, thus uncovering a potential mechanism whereby neutrophils may contribute to the pathogenesis of severe COVID-19 disease
    corecore